AUGUST 2023 EBS 301 CALCULUS 2 HOURS

Candidate's	Index Number
Signature:	

UNIVERSITY OF CAPE COAST COLLEGE OF EDUCATION STUDIES SCHOOL OF EDUCATIONAL DEVELOPMENT AND OUTREACH INSTITUTE OF EDUCATION

COLLEGES OF EDUCATION FOUR-YEAR BACHELOR OF EDUCATION (B.ED) THIRD YEAR, END-OF-FIRST SEMESTER EXAMINATION, AUGUST 2023

16TH AUGUST 2023

CALCULUS

9:00 AM - 9:40 AM

This paper consists of two sections, A and B. Answer ALL the questions in Section A and TWO questions from Section B. Section A will be collected after the <u>first 40 minutes</u>.

SECTION A (20 MARKS)

Answer ALL questions in this Section.

Items 1 to 20 are stems followed by four options lettered A to D. Read each item carefully and circle the letter of the correct or best option.

- 1. Given $\lim_{x \to a} f(x) = A$, what is $\lim_{x \to a} cf(x)$?
 - A. A
 - B. A-c
 - C. A + c
 - D. cA
- 2. Evaluate $\lim_{r \to -1} \frac{\ln x}{x+1}$
 - A. -1
 - B. 0
 - C. 1
 - D. Does not exist
- 3. Evaluate $\lim_{x \to 4} \sqrt{25 x^2}$.
 - A. 0
 - B. 3
 - C. 6
 - D. 9

- 4. Determine the point(s) where the function $f(x) = \frac{x^2 4}{x 2}$ is **not** continuous.
 - A. 2
 - B. 3
 - C. 4
 - D. 5
- 5. Which of the following statements is **not** true for a function f(x) to be continuous at x_0 ?
 - A. $f(x_0)$ is defined
 - B. $\lim_{x \to x_0} f(x)$ exists
 - $C. \quad \lim_{x \to x_0} f(x) = f(x_0)$
 - D. $\lim_{x \to x_0} f(x) \neq f(x_0)$
- 6. Given that u and v are functions of x, find $\frac{d(uv)}{dx}$.
 - A. $\frac{du}{dx} + \frac{dv}{dx}$
 - B. $\frac{dudv}{dx^2}$
 - C. $u \frac{dv}{dx} + v \frac{du}{dx}$
 - D. $\frac{du}{dx} \cdot \frac{dv}{dx}$
- 7. If y = f(x) and u = g(x) are both differentiable functions, then $\frac{dy}{dx}$ is given as
 - A. $\frac{dy}{du} + \frac{dx}{du}$
 - B. $\frac{dy}{du} \cdot \frac{du}{dx}$
 - C. $\frac{dydx}{du^2}$
 - D. $\frac{dy}{du} \frac{dx}{du}$
- 8. Find with respect to x, the first derivative of $(2-3x)^5$.
 - A. $-15(2-3x)^5$
 - B. $15(2+3x)^4$
 - C. $-15(2-3x)^4$
 - D. $-15x(2-3x)^4$
- 9. Find the linearization L(x) of the function $f(x) = \sqrt{x}$ at a = 4.
 - A. $1 + \frac{1}{4}x$
 - B. $1 + \frac{1}{2}x$
 - C. $2 + \frac{1}{4}x$
 - D. $2 + \frac{1}{2}x$

- 10. If the linearization of $g(x) = \sqrt[3]{1+x}$ at a = 0 is $L(x) = 1 + \frac{1}{2}x$, use it to estimate the value of $\sqrt[3]{1.1}$.
 - A. 1.02
 - B. 1.03
 - C. 1.04
 - D. 1.05
- 11. Which of the following statement is **not** a condition for the function f to be continuous at x = a?
 - A. f(a) is defined.
 - B. $\lim_{x \to a} f(x)$ exists.
 - $C. \quad \lim_{x \to a} f(x) = f(a)$
 - D. $\lim_{x \to a} f(a) = f(x)$
- 12. Find $\lim_{x \to 1} \frac{\ln x}{x-1}$
 - A. 0
 - B. 1
 - C. 2
 - D. ∞
- 13. Evaluate $\int_{0}^{2} (4t + 3) dt$.
 - A. 14
 - B. 15
 - C. 17
 - D. 20
- 14. Let m_1 and m_2 be the gradients of the tangent and normal lines respectively to a curve at a point. What is m_1m_2 ?
 - A. -2
 - B. -1
 - C. 0
 - D. 1
- 15. Find the equation of the normal line to $y = x^3 2x^2 + 4$ at (2, 4).
 - A. 4x y = 18
 - B. x 4y = 18
 - C. x + 4y = 18
 - D. 4x + y = 18
- 16. The velocity of a particle in ms^{-1} , after t seconds, $v = 3t^2 + 2t 1$. Determine its acceleration at the of 2 seconds.
 - A. $10m/s^2$
 - B. $13m/s^2$
 - C. $14m/s^2$
 - D. $17m/s^2$

- 17. If $\int_2^a (2x+2) dx = 8$, a > 0, determine the value of a.
 - A. 2
 - B. 3
 - C. 6
 - D. 8
- 18. Find the area under the parabola $y = x^2 + 2$, above the x axis, and between x = 1 and x = 3.
 - A. $10\frac{2}{3}$ sq units
 - B. $12\frac{2}{3}$ sq units
 - C. $12\frac{2}{7}$ sq units
 - D. $12\frac{5}{7}$ sq units
- 19. Find the area of the region enclosed by the parabolas $y = x^2$ and $y = 2x x^2$.
 - A. $\frac{1}{3}$
 - B. $\frac{1}{2}$
 - C. 2
 - D. 3
- 20. Find y'', given x + xy + y = 2.
 - $A. \quad \frac{1+y}{(1+x)^2}$
 - B. $\frac{2(1+y)}{(1+x)^2}$
 - C. $\frac{1-y}{(1+x)^2}$
 - D. $\frac{2(1-y)}{(1+x)^2}$